NOTATION

T(r, x, 1), temperature at any point of the experimental object; r, x, current coordi-
nates of object; 1, time; olr, x, 1) = T(r, %, 1) — T,, excess temperature of experimental
object; q(t), heat-flux density; U(x, t), potential in cross section x of long line; i(x, t),
current in cross section x of long line; x, current coordinate of long line; t, time;_y,
constant of propagation; p, Laplace-transformation parameter; z,, wave resistance of RC
structure; z1,, load resistance; A, B, matrix elements of quadrupole; h,(t), h,(t), transi-
tion characteristics of the models; k, tunable coefficient; erfc x = 1 — erf x; erf x = 2/

X
—~ 2 . ,
e f e ¥%dx, Gaussian error function.
0
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FORMULAS FOR THE DISCREPANCY GRADIENT IN THE ITERATIVE SOLUTION
OF INVERSE HEAT-CONDUCTION PROBLEMS. II. DETERMINING THE
GRADIENT IN TERMS OF A CONJUGATE VARTIABLE

0. M. Alifanov and S. V. Rumyantsev UDC 536.24

The construction of the functional-deficiency gradient is considered for the
iterative solution of inverse problems in the case of an equation of para-
bolic type. Nonlinear formulations of the problem are considered in the gen-
eral case.

In the first part of this rveport [1], formulas were cbtained for the discrepancy gra-
dient in terms of the Green's function of the corresponding boundary problem. A more gen-
eral method of finding the gradient is based on solving the conjugate boundary problem [2,
3]. Below, an approach to deriving the conditions of this problem and formulas for the
discrepancy gradient allowing a rigorous basis for the results obtained to be established
is outlined.

Suppose that in a region with mobile boundaries Q¢ = {X;(1) < x < X,(1), 0 < T < 14}
a quasilinear parabolic equation is specified

The initial and boundary conditions for Eq. (1) are
T (x, 0) = E(x), (2)
(AT 4+ BT ]y, = Pi{T), E=1, 2, (3)

S. Ordzhonikidze Moscow Aviation Institute. Translated from Inzhenerno-Fizicheskii
Zhurnal, Vol. 52, No. 4, pp. 668-675, April, 1987. Original article submitted January 6,
1986.
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where the numbets aj, Bj define a particular type of boundary conditions.

In determining £(x), p,(1), p,(7), i.e., in solving the retrospective and boundary in-
verse problems, the coefficients and free term in Eq. (1) will be assumed, in the general
case, to be functions of T(x, 1), %, and t: C(T, x, t) A(T, x, t), K(T, %, ), g(T, %, *).
In solving the coefficient inverse problems, one or more of the functlons c(T), AM(T), K(T),

g(T) are the desired quantities.

Suppose that, as an additional condition, the dependence f(t) = T(d(t), t) is known
at one spatial point x = d€t) moving over time. The coordinate of this point corresponds
to the conditions: X,(t) < d(t) when o, # 0, X,(t) < d(t) when a, = 0, d(t) < X,(1) when
a, # 0, d(t) < X,(7) when a2, = 0. Regarding the curves of X,(1), XZ(T) d(t,), t€l0, tql,
it is assumed that they are piecewise-smooth functions.

The generalization to the case of N dependences f,(t) = T(d,(t), 1), n=1, N, N> 1
will be given in the third part of this report.

To solve this problem using one of the gradient methods, it is necessary‘to know the
gradient of the discrepancy functional

T

I@ = (17 @ 4@, 9 —Frds B
0
in terms of the vector function

u={E(x), p (1), pa(v), MT), C(T), K(T), g(T)}, (5)

where £(x)eL,(X,(0), X,(0)1; p;(1), £(1)eL,{0, tul; A(T), C(T), K(T), g(T)eL,[T,, Tvl.
Here T,, TM are the boundarles of the region in which the corresponding coefficients of the
free term of Eq. (1) must be found.

Below, two auxiliary boundary problems are required: the problem for the field incre-
ment T(x, 1) and its conjugate problem.

Problem for the Field Increment

Suppose that the components of u undergo an increment: C(T) + AC(T), A(T) + ax(T), K(T) +
AR(T), g(T) + ag(T), &£(x) + Aa&(x), p,(t) + Ap;(1), po(7) + Ap,(t). This new set of data
will correspond to the function T(x, t) + v(x, 1) and the system in Egs. (1)-(3) is written
in the form

[C(T + )+ AC(T 4+ )T + vl; = {(MT + v) + AM(T + 01T + vla}xt

+ [K(T +v) + AK(T + )T + vl + g(T + 0)+Ag (T+ ), (¥, €Qx; (6)
T (x, 0)+v(x, 0) =& (x)+ AE(x); (7)
{(ll”\: (T+U)+A7V (T+v)][T+U]x+ﬁz [T_i_v]}x:‘\'i(r):pi (T)_{_Apz (T)r i=1, 2. (8)

Here the dependences of C, A, K, g on x and 1, which may belpresent in solving the retro-
spective and boundary inverse problems, are conventionally not shown.

The corresponding conditions in Egqs. (1)-(3) are now subtracted from Eqs. (6)-(8) and
C(T + v), A(T + v), K(T + v), g(T + v) are taken in the form of Taylor-series expansions,
retaining their first two terms, while AC(T + v), AA(T + v), AK(T + v), Ag(T + v) are taken
in Taylor-series expansions retaining the first term. In addition, it is taken into ac-
count that the coefficients C, A, K, g in the direct problem in Eqs. (1)-(3) are known
functions of the temperature T(x, t), which is regarded as specified in the given condi-
tions for the increment v(x, t). Therefore, below, these coefficients are known functions
only of the independent variables x and t. As a result, after several transformations,
the following formulation of the problem is obtained for determining v(x, t)

Vp = QyUyy + AUy + a0 + g+ @, (¥, T)EQ: (9)
o(x, 0) = A% , (10)
B0 (X; (1), T)=1[yvs + O] ey, (ry) = P 4o, i=1, 2, (1D
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where a, = A/C; a, = (20g + K)/C; a3 = O\gx + g7 + Kg = C¢)/C; q = (1/C) x [MATgx + (8A)g-
Ty + AKTy + Ag — ACTc1; Y3 = azr (X3(1), 1), 05 = ajAg(Xi(t), 1) + By ei(T) = Ap3(v) -
a; A (X (), T)Tg(Xi(1), 1); w, wy, w, are the remainder terms (if a; = a; = 0, then v, =
w, = 0).

Using the substitution y = (x — X;(1))/(X,(7) — X,(1)), t = 1, the region Q; is trans-

formed into the rectangle R = (0, 1) x (0, 1y5). Here aj(x, 1) and q(x, 1) are transformed
to aj(y, t) and q(y, t), respectively, and the formulation of Egs. (9)-(1l) takes the form

o= by, + b, + b0+ g0 (1 DER; (12)

vy, 0)=AE(y); | (13)
B0 (0, ) =10, + 010ly=0 = £1 (1) + ©y; (14)
By (1, 1) = [lyv, - 050}y = pa (£) 4 s, (15)

where
b=l b e @0 0+ X0+ - Xy, X=-EL
— ] 2,
sl e e

Thus, eliminating W, &1 @2, i.e., proceeding to a linear approximation of the boun-
dary problem for the increment v(y, t), the system in Egqs. (12)-(15) is analogous to the
formulation of Egs. (2)-(4) in [1].

Moreover, using the results of [4], it may be shown that the problem obtained from
Egs. (9)-(11) and correspondingly Eqs. (12)-(15) by discarding nonlinear terms is the
Freshe derivative A' of the operator A corresponding to the desired value of the function
T(d(t), t). To this end, it is sufficient to require that C(T), K(T), and g(T) are func-
tions that are twice continuously differentiable, while A(T) is triply continuously differ-
entiable; pieW3[0, t,], i = 1, 2; £eWl [X;(0), X,(0)] and the matching conditions of the
initial and boundary conditions are satisfied.

Below, it is assumed that nonlinear terms are discarded in Egs. (9)-(11) and (12)-(15).

Considering the case of boundary conditions of the second and third kinds (o, # 0, a, #
0), the problem in Egs. (12)-(15) is reduced to zero boundary conditions

O = by, + by, - by +q-+z, (Y, DER; (16)
v(y, 0)=0; (17)

hv, + 6y0ly=0 = 0; (18)

[0, + 6501 = O. (19)

To determine the function z = z(y, t), the solutions of Eqs. (12)-(15) and (16)-(19)
are written in terms of Green's functions — see Eq. (25) in [1] — and equated

i z ’
(2@ G, & v, Ody — | S5O0 np @G, b o, #)dr +
0

s L)
E b (1, 1) L oae =
+ [ L A NGy, & 1, t)ar = (' [ 2y, )G, & o, 1) dy,
s L@) 8 b
and hence
o ____bl(y» B M6 by (y, 1) My —1 AES (¢
2y, H= —Za—mdﬂ(w+—za—mﬂn(y ) -+ AES (2),
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where 6(*) is a delta function.

With this function z(y, t), the problem in Egs. (16)-(19) is identical to the problem
in Egs. (12)-(15) and hence that in Eqs. (9)-(11). Making the inverse transition (from
y, t to x, t) in Egs. (16)-(19), a formulation equivalent to Eqs. (9)-(11) is found, tak-
ing account of the properties of the & function: §(ag) = 8(g)/|al, when a # 0 is real

Up = QiUpy -+ @0 + a0+ g+ 2, (¥, 1)€Qs (20)
v(x, 0)=0; (21)
Bi‘tv(Xi(T)$ T):O! i= 17 2) (22)
where
a
25 1) = — )bl — X () + —j— (02) 8 (x — X, (v)) + AES (v).
1 2
Conjugate Problem
Supposing that
0 0% i,
L:"E‘_‘Axm Ape=ay o2 + a, ox -+ a,,

%= q—ay-2L 8 (x — X, () + a, —i—‘%—mmxz (1)) + AES (z),
1 3

‘\7

the problem in Egs. (20)-(22) is rewritten in the form
Luv=y, veED;. (23)

Here D, = {veG(Q¢); Bj v(Xj(t), 1) = 0, i = 1, 2; v(x, 0) = 0} is the region of definition
of operator L; G(QT) is the set of functions v = v(x, t) with continuous derivatives Voo
Vgs Vxg in Q.

Considering L as an operator mapping Dj, € L,(Q;) in space L,, the scalar product of the
elements Lv, yel, is written

(Lo, $) = | | $Lodxdr,

Qr _
where ¢ = $(x, t) is a function sufficiently smooth in Q.

The conjugate operator L* is defined in accordance with the Lagrangian identity
| (Lo, ¥) = (v, L*¥) (24)

and the scalar product on the left is expanded as follows

[T wLodrdr = § § 4 @0 — ar0se— ayo. — a) drde = 1, — I,
Q Q;
where

I = [ { 1= ve + (@) vy + (@)s 0 — asto] did,
Qr .
I, = { { Uanpos + axfo), — (fo)e] dxdr.
Qr
Formulas for integration by parts will be required below [4]; for the present case, they
take the form

” ugudxdr = — \S uvdxdrt - S uvdr, u, vEWy° Qo)
Q o QT

~

\ \ uudxdt = — \S‘ uv.dxdt — S uvdx, u, vEW3(Q,),
uQ; th “

E7Q_c
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where BQT'" is the boundary of the region Q;, oriented so that on passing around the boundary
the region remains on the left. In the present case

Fm Tm |
== 'C — u Ti
5 uvdt | ow A_:szd \ le=xl(1)
aQ;i— 0 0
i T i Xatm) Tm i X2(0)
‘S uvdx = ( uv |X=NT)X2 (vydy — ( uv i, dx — f uv L-:x,mX‘ (vydv + \ uv lr=0 dx.
+ 0 S X1 (tm) 0 X4(0)
Q]
Then
im Xa(1)
“' (a1 ), vadxdt = — ” (@ P)sx vdxd + | (a@rh) v dv.
‘ : D YC 3}
Qr Qy 0
Thus

«\—'Xz(T)

1(7)

L= [ (01— b — (art)es + (@P: —aawxdrﬂ v (@]
3

Using the same formulas for integration by parts, integral I, is found to be

Tm , ,‘.rm , XZ(?m) e (0)
— (W] @dr vl Xi@drd ] de |l
p T o o

Xaltpy " X500)

Xo(% )

Y (a1 v, + aspv )’

\1(1;) XD

The latter integral is zero, since v(x, 0) =

Invoking the boundary conditions in Eq. (22), the final expression for I, is

Tm l— , S i p XalTm)
Iy = ( {U¢ Xy +ay,— =32 al] —U\P{X1+Gz‘—'—lax} }dr”f" ( Y (X, TR VX, Te)dX.
b L V2 x=X4(7) Y1 =X (1) Xu(Tp)

Turning to the identity in Eq. (24), it is found that ¢(x, 1) must satisfy the conditions
of the following boundary problem, which is conjugate to the problem in Egs. (20)-(22)

L*{x, ) =L(x, 1), (x, 1)€Qx; (25)
w(x, Tm) = 0, (26)
B:ﬂ!'.x=x_m5 [(al‘.k)x_u/ (X + s — ‘—al)} 0, » 2, (27)
where L* = — 3/37 — Ayr™, Agc ¥ = (a19)gx — (as¥)g + asy. The function {(x, t) will be

found below.

Formulas for the Discrepancy-Functional Gradient

The problem in Eqs. (25)-(27) is written in a form analogous to Eq. (23)
L* =1L, $&Dps,
where D = {$€G(Q.); B?TlpIX:Xi(T) =0, i=1, 2; y(x, 1) =

Suppose that L~! and L*~ ' are operators inverse to L and L*, respectively. The scalar
product for the elements v and ¢ is

(v, ¥) = {(LL=v, §) = (L~lv, L*y) = (v, L=I*L*Y).

Hence L™'*L* = I in Dpx (I is a unit operator). Thus

L% = L1, (28)
For the Freshe-differentiable operator A of the_direct problem, the gradient of the
functional J is found from the formula J' = (A')*(Au — £) and the increment in the func-

tional AJ takes the form
AJ =T (@4 Awy—J (@) =(J°, Aw)+ o{[jAull) = (Au—f, A'Au)+ o(l|Aull),

or in the adopted notation
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AJ = § [T (u, d(z), V) —f@Ivd(®), 1)dv + o(|Aul).

0

Next AJ is written in terms of a § function, in the form

Tm XafT) __
AJ={ dt | v(x, ©)h(r)8(x—d(1)dr+ oAz,
[} X1(3)

where h(t) = T(u, d(t), 1) - £(1).
Noting that v(x, 1) = L™'(x) and introducing the conjugate operator, it is found that

AJ~§§ L1 () b (v) 8 (v — d () dedr + 0 (18d) = 0 L (A8 (x —d @) + o(jA.  (29)

Since Eq. (28) holds, it follows that
L= R0 x—d@) =y,

where § = $(x, 1) is the solution of the problem in Eqs. (25)-(27), where ¢(x, t) = h(t)-
8§(x = a(r)).

Expanding the function x in Eq. (29) gives

= (¢, gl Xy + —:} ab (x — X3) -+ ABD <r>) + o(lAg]). (30)
i 2

Establishing a relation between the direct and conjugate problems, which leads ulti-
mately to the derivation of Eq. (30), is also necessary in a rigorous formulation, most
notably in terms of the applicability of the formulas for integration by parts, which im-
poses the requirement of definite smoothness on the integrand. The conditions on the ini-
tial data of the direct problem ensuring the required smoothness of solutions of the direct
and conjugate problems may be obtained using results of [5]. For this purpose, it is
sufficient to require satisfaction of the conditions ensuring that the operator of the
direct problem is differentiable.

From Eq. (30), AJ is found in the form
AJ = (D, Au)+ o (j|Au).
It is obvious here that ¢ = J'.

To obtain the component of the gradient J'y with respect to a single component u of
vector u, all the components of u except for that required must be set equal to zero in
Eq. (30). Then it follows from Eq. (30) that

AJ = (By, Au)+ o (JAul), i-e. D, =T,

Thus, formulas for the components of the gradient with respect to £, p,, p, are ob-
tained from Eq. (30)

F@) = (x 0) Jp, (@) = — $ (X, (2, r)ﬁ‘ﬁi—ﬁﬂ,
al (XZ T)’ T)
a9,

Jop (1) = ¥ (X2 (3), 7)
72 (T

Determining the components of the gradient J';, J'g, J'x, J'p is a considerably more
complicated prcblem. It may be simplified by seeking the coefficients and free term of
Eq. (1) in parameterized form (see [6], for example)

My M,
i=l1 j=1
My M,
K(T)= Y Kig;(T), g =2 gi0:i(T),
“:1 ]—-1
where {¢ }1 is a specified system of basis functions; AJ, CJ, KJ, gj are numerical coeffi-
cients, wh1ch remain to be determined.

The increments of these functions are written analogously:
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My M
AR(T) =¥ Ay (T), AC(T) =3 AC9;(T), ' (31)

=1

M, My
AK(T)= ¥ AKyp;(T), Ag(T)= 3 Ags; (D). (32)

j=1 i=l
Expanding q and pj in Eq. (30), taking account of the approximation in Egs. (31) and
(32), and performing simple transformations, formulas are obtalned for the gradlents of the
functional in Eq. (4) with respect to the vectors A= {25 3. M, {CJ}{MZ’ K = {Kj }1 3,

g = {gj}le, respectively

Ji;l‘-:cpo"l‘(pl‘}‘q)m =1 M
where

T, Xao(T
N L L T L8 DTt 0T 0 DTG Ik

5 X Cx, v
T
™ Y(x, 1) c 1 o
(I),._.bs e Ty (% Do (T (% )| _xy dr, i=1,2;
T. Xa(%) ——
Iy =— (" D& D o e (T, ) dx, [ =T, My
o xim €T
Tm X2(T)
Jig=1{ ar _‘P_(_LELT (x, Do (T (x, Ndy, [=1, My
i oxw CO T
T Xa(1) N o
Io={"ar | V& D o T, )y, =T, M
i X C(X, T)

Knowing J'g(x), J' s (1), J'x, J'Gs J'g, J'g, the search for the corresponding quantities
may be organlzed on the basis of regularizing gradient algorithms (2, 3, 6, 7].
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