
NOTATION 

T(r, x, ~), temperatur~ at any point of the experimental object; r, x, current coordi- 
nates of object; ~, time; @(r, x, ~) = T(r, x, ~) - T o , excess temperature of experimental 
object; q(T), heat-flux density; U(x, t), potential in cross section x of long line; i(x, t), 
current in cross section x of long line; x, current coordinate of long line; t, time;__~, 
constant of propagation; p, Laplace-transformation parameter; z w, wave resistance of RC 
structure; Zlo, load resistance; A, B, matrix elements of quadrupole; hi(t), h2(t), transi- 
tion characteristics of the models; k, tunable coefficient; erfc x = 1 - erf x; erf x = 2/ 

X 

/~ S e-X2dx, Gaussian error function. 
0 
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FORMULAS FOR THE DISCREPANCY GRADIENT IN THE ITERATIVE SOLUTION 

OF INVERSE HEAT-CONDUCTION PROBLEMS. II. DETERMINING THE 

GRADIENT IN TERMS OF A CONJUGATE VARIABLE 

O. M. Alifanov and S. V. Rumyantsev UDC 536.24 

The construction of the functional-deficiency gradient is considered for the 
iterative solution of inverse problems in the case of an equation of para- 
bolic type. Nonlinear formulations of the problem are considered in the gen- 
eral case. 

In the first part of this report [i], formulas were obtained for the discrepancy gra- 
dient in terms of the Green's function of the corresponding boundary problem. A more gen- 
eral method of finding the gradient is based on solving the conjugate boundary problem [2, 
3]. Below, an approach to deriving the conditions of this problem and formulas for the 
discrepancy gradient allowing a rigorous basis for the results obtained to be established 
is outlined. 

Suppose that in a region with mobile boundaries Q~ = {XI(~) < x < X2(T), 0 < �9 < ~m} 
a quasilinear parabolic equation is specified 

CT~ = (ET~)x + KT~ + g ( 1 ) 

The i n i t i a l  and boundary c o n d i t i o n s  f o r  Eq. (1) are  

T(~, 0) = ~(x), (2)  

(3) 
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where the numbers =i, Bi define a particular type of boundary conditions. 

In determining ~(x), pz(~), p2(~), i.e., in solving the retrospective and boundary in- 
,terse problems, the coefficients and free term in Eq. (i) will be assumed, in the general 
case, to be functions of T(x, ~), x, and ~: C(T, x, ~) I(T, x, ~), K(T, x, ~), g(T, x, ~). 
In solving the coefficient inverse problems, one or more of the functions C(T), I(T), K(T), 
g(T) are the desired quantities. 

Suppose that, as an additional condition, the dependence f(T) = T(d(~), ~) is known 
at one spatial point x = d(~) moving over time. The coordinate of this point corresponds 
to the conditions: El(T) ~ d(T) when ~x x O, Xl(~) < d(T) when a I = O, d(~) ! X2(~) when 
~2 ~ O, d(~) < Xz(T) when a 2 = O. Regarding the curves of Xx(~), X=(~), d(~2), Te[O, ~m], 
it is assumed that they are piecewise-smooth functions. 

The generalization to the case of N dependences fn(~) = T(dn(z), x), n = i, N, N ~ i 
will be given in the third part of this report. 

To solve this problem using one of the gradient methods, it is necessary to know the 
gradient of the discrepancy functional 

- 1 (~ [T(~  d(x), *)--[(~)lZdx (4)  
s (~) == - s  6 

in terms of  t he  v e c t o r  f u n c t i o n  

~ =  {~(x), p~(z), p~(x), ~(T), C(T), K(T), g(T)}, (5) 

where ~(x)eL2[X~(O), X2(O)]; p i ( ~ ) ,  f (~)eL~[O,  <m]; ~(T) ,  C(T), K(T), g(T)ea2[T 0, TM]. 
Here To, T H a r e  t he  boundar ies  of  t he  r e g i o n  in which the  co r r e spond ing  c o e f f i c i e n t s  of  t h e  
f r e e  te rm of  Eq. (1) must be found.  

Below, two a u x i l i a r y  boundary problems a re  r e q u i r e d :  t he  problem f o r  t h e  f i e l d  i n c r e -  
ment T(x,  <) and i t s  c o n j u g a t e  problem. 

Problem for the Field Increment 

Suppose that the components of u undergo an increment: C(T) + AC(T), %(T) + A%(T), K(T) + 
AK(T), g(T) + Ag(T), ~(x) + A~(x), p1(~) + Apl(~), p2(~) + Ap2(~). This new set of data 
will correspond to the function T(x, T) + v(x, ~) and the system in Eqs. (1)-(3) is written 
in the form 

IC(T + v) + AC(T + v)] [T + vI~ = {[X(T + v) + AX(T + v)l [T + vl~}x+ 

+ [K(T + v) + AK(T + v)] [T + v]~ + g(T + v)+Ag(T+ v), (x, z)E Q,; (6) 

T (x, O) + v (x, O) = ~ (x) + A~ (x); (7) 

{~  [k (T+v)+AX (T+v)I[T+V]~+~ IT+v] }~=x~(~)=P~ (T)+Ap~ (x), i=  1, 2. (8) 

Here the dependences of C, X, K, g on x and ~, which may be present in solving the retro- 
spective and boundary inverse problems, are conventionally not shown. 

The corresponding conditions in Eqs. (1)-(3) are now subtracted from Eqs. (6)-(8) and 
C(T + v), X(T + v), K(T + v), g(T + v) are taken in the form of Taylor-series expansions, 
retaining their first two terms, while AC(T + v), A~(T + v), AK(T + v), Ag(T + v) are taken 
in Taylor-series expansions retaining the first term. In addition, it is taken into ac- 
count that the coefficients C, X, K, g in the direct problem in Eqs. (1)-(3) are known 
functions of the temperature T(x, ~), which is regarded as specified in the given condi- 
tions for the increment v(x, ~). Therefore, below, these coefficients are known functions 
only of the independent variables x and ~. As a result, after several transformations, 
the following formulation of the problem is obtained for determining v(x, ~) 

v.~ = alv~ + a,,v~ + a3v + q + o.,, (x, "0 E Q~; 

v (x, 0) = A~; 

Bi~v(Xi (T), "0 ~[?~v~ + cr~v]~=xi(~ ) = Pi (T) + ~o~, i = 1, 2 ,  

(9) 

(lO) 

(11) 
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where a~ = X/C; a2 = (2Xx + K)/C; a s = (Xxx + gT + Kx - Cz)/C; q = (i/C) • [AXTxx + (hi) x. 
T x + &KT x + Ag - ACT~]; 7i = ~i ~ (Xi(~), ~), ~ = aiXx(Xi (~)' ~) + ~i; 9i (~) = APi(Z) - 
eiAX(Xi(z), x)Tx(Xi(~), z); m, mx, m= are the remainder terms (if ~x = ~ = 0, then ml = 

~2 = 0). 

Using the substitution y = (x - X~(~))/(X2(~) - XI(~)), t = ~, the region Q~ is trans- 
formed into the rectangle R = (0, i) • (0, ~m)" Here ai(x, ~) and q(x, ~) are transformed 
to ~i(Y, t) and q(y, t), respectively, and the formulation of Eqs. (9)-(11) takes the form 

v, = blvvv if- b...v v q- bsv -+-, q q- ~'~, (y, t) ~ R; ( 1 2 )  

v(g,  O) = A~_(Lt); ( 1 3 )  

B~tv(O, t) =- [llv, a q- olvly=0 - -  t31 ( t )  -@ (Ol; ( 1 ~ )  

where 

B..tv (1, t) ~-  [/~_vy 4- c~.~vl,j=, -= O~ (0 + ("o, 

h-l(v, t) . 1 {-~(v, t ) + x ~ ( O  + ~ ; [ x ~ ( t ) - x ~ ( t ) l } ,  x;=_ dx.:. 
bl = b G  (t) -- x1 ( 0 7 '  b~ -- x~. (t) - -  x l  (5 ,it ' 

(15) 

t,. = a~ (v ,  t); h = - - ~ "  (t) ; Io = v~ (0 
x~ (t) - x l  (t) xo_ (t) - x ,  (t) 

Thus, eliminating ~, ~i ~2, i.e., proceeding to a linear approximation of the boun- 
dary problem for the increment v(y, t), the system in Eqs. (12)-(15) is analogous to the 
formulation of Eqs. (2)-(4) in [I]. 

Moreover, using the results of [4], it may be shown that the problem obtained from 
Eqs. (9)-(11) and correspondingly Eqs. (12)-(15) by discarding nonlinear terms is the 
Freshe derivative A' of the operator A corresponding to the desired value of the function 
T(d(~), ~). To this end, it is sufficient to require that C(T), K(T), and g(T) are func- 
tions that are twice continuously differentiable, while %(T) is triply continuously differ- 
entiable; pi~W~[0, ~m], i = i, 2; ~W~ [XI(0), X2(0)] and the matching conditions of the 
initial and boundary conditions are satisfied. 

Below, it is assumed that nonlinear terms are discarded in Eqs. (9)-(11) and (12)-(15). 

Considering the case of boundary conditions of the second and third kinds (al ~ 0, ~2 ~ 
0), the problem in Eqs. (12)-(15) is reduced to zero boundary conditions 

v t = b l v y v ' 3 w b 2 v v - ~ v + q ' - ~ - ~  z, (y, l) ER; ( 1 6 )  

v(y ,  0) = 0; ( 1 7 )  

[llv,s + (hvly=o --- 0; ( 18 ) 

[12vy + ~..vly=, = 0. (19) 

To determine the function z = z(y, t), the solutions of Eqs. (12)-(15) and (16)-(19) 
are written in terms of Green's functions - see Eq. (25) in [i] - and equated 

1 ~ bt(0, t') [APl(t ')]G(Y, t; O, t ' ) d t ' +  
t; y', I It(r) 

0 0 

I 

t b , (1,  t') [ap~(t')la(y, t; 1, t')dt' = . I  d t ' f  - " ~" d "  + .f t2(t') o ~ [ z ( g ,  t')l 6 ( y ,  t; y ,  t') V,  
0 

and hence 

~-(V, t) - -  bl (y, t____~) [01 (01 ~ (y) 4 
l l  q) 

bl(v, t) [o2( t )16(V- -  1) + A~-6(t), 
l~ (t) 
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where 6 ( ' )  is a delta function. 

With this function z(y, t), the problem in Eqs. (16)-(19) is identical to the problem 
in Eqs. (12)-(15) and hence that in Eqs. (9)-(11). Making the inverse transition (from 
y, t to x, ~) in Eqs. (16)-(19), a formulation equivalent to Eqs. (9)-(11) is found, tak- 
ing account of the properties of the 6 function: 6(a~) = 6(~)/[al, when a ~ 0 is real 

v ~ = a ~ v ~ + a 2 v ~ + ~ v + q + z ,  (x, T)EQ~; (20) 

v(x, 0)---- O; (21) 

where 

Conjugate Problem 

Supposing that 

z(x, T)- 

Bi~v(X~(x), x)=O, i =  1, 2, 

a~ (91) 6 (x - -  X, (x)) + az (P2) 6 (x - -  X2 (x)) q- Ag6 ('c). 
?J Y2 

(22) 

O 02 O 
L 0"~ A~,, A ~  ~ +  - - + a 3 ,  . . . .  aa Ox z a2 Ox 

z = q - -  al- o_t 8 ( x - -  x l  (~)) + a~ 2" ~ (x - -  x~ ( , ) ) +  a~8 (,), 
~'i Y.. 

the problem in Eqs. (20)-(22) is rewritten in the form 

L v = x ,  VE DL. (23) 

Here D L = {veG(q~); Bi~v(Xi(~), ~) = 0, i = i, 2; v(x, 0) = 0} is the region of definition 
of operator L; G(Q~) is the set of functions v = v(x, ~) with continuous derivatives v~, 
Vx, Vxx in QT" 

Considering L as an operator mapping D L c L2(QT ) in space L2, the scalar product of the 
elements Lv, ~L 2 is written 

Qx 
where ~ = ~(x ,  ~) i s  a f u n c t i o n  s u f f i c i e n t l y  smooth in Q~. 

The conjugate operator L* is defined in accordance with the Lagrangian identity 

(iv, ~ )=  (v, i*~) (24) 

and the scalar product on the left is expanded as follows 

% % 
where 

q~ 
1.~ = J'J" [(a~W= + a2~v)x - -  (,v)~] dxd'~. 

Formulas f o r  i n t e g r a t i o n  by p a r t s  w i l l  be r e q u i r e d  below [4] ;  f o r  t h e  p r e s e n t  ca se ,  t h e y  
take the form 

= ~ ( G ) ,  

Q~ Q~ aQ~ 

,i !" - .... S c 
Qz % OQ~ 
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where 8Qx + is the boundary of the region Q~, oriented so that on passing around the boundary 
the region remains on the left. In the present case 

Thus 

Then 

oQ~ o o 

X~(x m) X=(O) 
S uvdx "xm xm ' 

OOx+ 0 X A'~m) 0 X ,( O) 

rm V X~('r) 

Q~ '% b Ah(~) 

Jm . . mx=X,(-r) 
I , =  SSv[--**--(a~,) ,~-l-(a~. ,)x--aa,]dxd'v-t-  ~ v(al*)~[ d'r. 

�9 x=Xd~) Q~ 0 

Using the same formulas for integration by parts, integral 12 is found to be 

~m ,~. rn X=(~m) ,%(0) 
Io ,[ (aa~vvx + a~.,v)]X'(*)d.c xra , ! 
= o x,., - o; x=x.,. + +,,,,,o,,t ...; oY  1.=o 

The latter integral is zero, since v(x, 0) = 0. 

Invoking the boundary conditions in Eq. (22), the final expression for 12 is 

10. v~ X2 q- ao % y~. x=x~(~)-- V~ XI + a.,_ --  a, al d'r -Jr .t ~ (x, "rm) v (x, "rm) dx. 
Y1 Jx=XI(T)J Xl('gm) 

T u r n i n g  t o  t h e  i d e n t i t y  in  Eq. ( 2 4 ) ,  i t  i s  found  t h a t  ~ ( x ,  x) must  s a t i s f y  t h e  c o n d i t i o n s  
o f  t h e  f o l l o w i n g  bounda ry  p r o b l e m ,  which  i s  c o n j u g a t e  t o  t h e  p ro b l em  in  Eqs.  ( 2 0 ) - ( 2 2 )  

L*fp(x, 1:)=~(x,  "r), (x, x)6Q~; (25) 

~(x, Tm)= 0; (26)  

(a,~').~--~ a2--- al = 0 ,  i , -  1, 2, (27)  
, Yi 

where  L* = - 8/it~ - kxx " ,  Axx"'~ = ( a l ~ ) x x  - ( a2~)  x + a l ~ .  The f u n c t i o n  ~,(x, ~) w i l l  be 
found below, 

Formulas for the Discrepancy-Functional Gradient 

The problem in Eqs. (25)-(27) is written in a form analogous to Eq. (23) 

L * ~ = ~ ,  ~CDL*, 

where DE, = {@eG(Q~); B~@[x=Xi(~ ) = 0, i = i, 2; ~(x, ~m) = 0}. 

Suppose that L -I and L *-I are operators inverse to L and L*, respectively. The scalar 
product for the elements v and ~ is 

(v, l~)= (LL-lv, ~ )=  (L-iv, L*~)-=(v, L-I*L*~). 

Hence L-X*L * = I in DL, (I is a unit operator). Thus 

L - l * =  L*- l .  (28)  

For the Freshe-differentiable operator A of the direct problem, the gradient of the 
functional J is found from the formula J' = (A')*(Au - f) and the increment in the func- 
tional AJ takes the form 

AJ -~ J ~ + A~) - -  J (~  -- i f ' ,  A ~  + o ([[A~I) = (AJ - -  f, A'A~) + o (I[A~II), 

or in the adopted notation 
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T m 

AJ = .I [T (~ d (~), ~) - -  [ (~)] v (d (~), ~) dv q- 0 (llA~II) 
0 

Next AJ is written in terms of a ~ function, in the form 

AJ = dw / v (x, w) h (w) 8 (x - -  d (w)) dz -k o (IIA~I), 
b xh~} 

where h(~) = T(u, d(T), x) - f(~). 

Noting that v(x, <) = L-z(X) and introducing the conjugate operator, it is found that 

AJ= Sy L-~(x)h(T)6(x--d(T))dxdT +o(IIA~I) =(X, L-l*[h(~)6(x--d(T))])-]-o([[A~[). (29)  

Since Eq. (28) holds, it follows that 

L - l *  [h (~) 6 ( x - -  d (T))] = r 

where  ~ = ~ ( x ,  <) i s  t h e  s o l u t i o n  o f  t h e  p ro b l em  in  Eqs.  ( 2 5 ) - ( 2 7 ) ,  where  ~ (x ,  ~) = h ( ~ ) .  
6 (x  - d ( T ) ) .  

Expand ing  t h e  f u n c t i o n  • in  Eq. (29)  g i v e s  

~' p ~ ( ~ - x , }  + ~_2, p.,~ ( ~ _  x~) + a;~ (~)) + o([Ia~ll). (30) A J =  $' q - -  Tt ~ " 

E s t a b l i s h i n g  a r e l a t i o n  be tween  t h e  d i r e c t  and c o n j u g a t e  p r o b l e m s ,  which  l e a d s  u l t i -  
m a t e l y  t o  t h e  d e r i v a t i o n  o f  Eq. ( 3 0 ) ,  i s  a l s o  n e c e s s a r y  in  a r i g o r o u s  f o r m u l a t i o n ,  most  
n o t a b l y  in  t e r m s  o f  t h e  a p p l i c a b i l i t y  o f  t h e  f o r m u l a s  f o r  i n t e g r a t i o n  by p a r t s ,  which  im- 
p o s e s  t he  r e q u i r e m e n t  o f  d e f i n i t e  smoo th n es s  on t h e  i n t e g r a n d .  The c o n d i t i o n s  on t h e  i n i -  
t i a l  d a t a  o f  t h e  d i r e c t  p r o b l e m  e n s u r i n g  t h e  r e q u i r e d  sm o o th n es s  o f  s o l u t i o n s  o f  t h e  d i r e c t  
and c o n j u g a t e  p rob l ems  may be o b t a i n e d  u s i n g  r e s u l t s  o f  [ 5 ] .  For  t h i s  p u r p o s e ,  i t  i s  
s u f f i c i e n t  t o  r e q u i r e  s a t i s f a c t i o n  o f  t h e  c o n d i t i o n s  e n s u r i n g  t h a t  t h e  o p e r a t o r  o f  t h e  
d i r e c t  p r o b l e m  i s  d i f f e r e n t i a b l e .  

From Eq. ( 3 0 ) ,  5J  i s  found  in  t h e  form 

I J  := ({'D, A~) 2 0 (IBT.II). 

I t  i s  o b v i o u s  h e r e  t h a t  r = J ' .  

To o b t a i n  t h e  component  o f  t h e  g r a d i e n t  J ' u  w i t h  r e s p e c t  t o  a s i n g l e  component  u o f  
vector u, all the components of u except for that required must be set equal to zero in 
Eq. (30). Then it follows from Eq. (30) that 

AJ == (d)u, Au) + o(llAuli), i.e. (D u ~ J~. 

Thus ,  f o r m u l a s  f o r  t h e  componen t s  o f  t h e  g r a d i e n t  w i t h  r e s p e c t  t o  5, p~,  p2 a r e  ob-  
t a i n e d  f rom Eq. (30 )  

J~ (x) = q'.' (x, 0), Jp, (T) -~ - -  • (Xl (•), T) al (Xl (T), T) , 
~1 (T) 

J~.. (~) = ~ (x~ (~), ~) al (x~ (~), ~) 
~ (~) 

! ! Determining the components of the gradient J X, J C, J'K, J'g is a considerably more 
complicated problem. It may be simplified by seeking the coefficients and free term of 
Eq. (i) in parameterized form (see [6], for example) 

Ml M2 

j = l  j = l  

M3 M4 

K (v) = ~ Kjr (T), g if)  = ~ gjq~j (r), 
i=l i=I 

where {r M is a specified system of basis functions; Xj, Cj, Kj, gj are numerical coeffi- 
cients, which remain to be determined. 

The increments of these functions are written analogously: 
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A-1 a 2d~ 

A)~ (T) ---- ~ A~Wj (T), AC (T) -= .;~'%~ AC]~ (T), 
1=1 7=I 

(31)  

31 a 3f  

AK(T) = ~ AKjcgj (r), Ag (T) = ~ Agj%. (T). (32) 
i=1 1=1 

Expanding q and Pi in Eq. (30),  taking account of the approximation in Eqs. (31) and 
(32),  and performing simple t r ans fo rmat ions ,  formulas are  obtained for the g rad ien t s  of the 
functional in Eq. (4) with respect to the vectors h = {Xj}IMI, C = {Cj}~2, K = {Kj}IMa, 

= {gj}iM4, respectively 

J~z=~Do-}-cPl+cD2, l =  l, M~, 
where 

fm d. X~i~) ~ (x, .~) [ Tx~ (x, "~) ~z (T (x, "c))+ T~ (x, "c) dff.z (T (x, "~)) ] dx, 0)o~ 
o x:(~) C(x, x) dT 

? @i ---- " * (x, z) T~ (x, ~) q% (T (x, w))lx=x,c~) d'~, i = 1, 2; 
o C(x ,  "0 

Jc, = - -  f d~ f , (x, ~) T.  (x, "~) ~, (T (x, "c)) dx, l = l, M2; 
o x ,~)  C(x ,  "0 

�9 ;m Xdx) 
JK~ = d'~ ~ ~ (x, "c) T~ (x, ~c) c# z (T (x, "c~) dx, l = 1, M3; 

o x,c~) C(x ,  "0 

�9 ~,~ x , ~  ~ ( x ,  ~) 

0 X~(~) 

Knowing J'$(x), J',.(T), J'~, J'?, J'~, J'~ the search for the corresponding quantities 
may be organized on th~Xbasis of regularizing gradient algorithms [2, 3, 6, ]. 
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